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1 Introduction

The forthcoming LHC data will hopefully improve our current understanding of particle

physics. The discovery of the Higgs particle will be of primary importance. Moreover, new

particles and interactions are expected to be within reach. In order to be able to discover

new physics, the precise description of multi-parton final states is necessary [1].

At the leading order in perturbation theory, many tools are already available that

are able to simulate any scattering process involving up to several partons, among them

Alpgen [2], MadEvent [3], Sherpa [4], HELAC-PHEGAS [5–8], WHIZARD [9]. These tools are

highly automated and they have been widely used [10]. The advance of algorithms based

on recursive equations [11–13] to calculate multi-parton scattering amplitudes as opposed

to the traditional Feynman graph approach, has been proven a very important factor in

order to build up fast and reliable computer codes.

At the next-to-leading order the situation is currently less advanced. At the concep-

tual level, one has to deal with an integration over the loop momentum which results

to ultraviolet and infrared divergencies. Dimensional regularization [15, 16] is needed in

order to produce meaningful results. The amplitude can be cast in the form of a linear

combination of known scalar integrals [17] — boxes, triangles, bubbles and tadpoles —

multiplied by coefficients that are rational functions of the external momenta and polar-

ization vectors, plus a remainder which is also a rational function of the latter. At the

practical level, one has to devise an efficient algorithm to calculate all these ingredients.

Starting with the scalar integrals, the problem is considered solved: there exist several

implementations, covering all cases of interest [18, 19]. We will also present such an imple-

mentation in appendix A. As far as the full one-loop amplitude is concerned the situation

is less satisfactory for the moment. On the one hand there are tools, like MCFM [20], that

are able to produce results at NLO accuracy, for specific scattering processes, based on

analytic calculations. On the other hand the only automatic tool available for some time

now was FeynCalc [21] and FormCalc [22]. These tools rely heavily on the use of computer
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algebra programmes, notably Mathematica1 and FORM [23], and are based on the tradi-

tional Passarino-Veltman [24–27] (PV) reduction of Feynman graphs, that are generated

automatically (FeynArts [28] or QGRAF [29]). In order to produce numerical results, tensor

coefficients functions are calculated using LoopTools [30]. For processes with two particles

in the final state, their performance is very satisfactory. For the time being five-point rank

four is the highest available option. It should be noticed though that there exist several im-

portant calculations, that make use of these automatic packages such as FeynArts, QGRAF

and FormCalc, producing results with up to four particles in the final state[31–35], but

for the moment no publicly available automatic tool exists. Recently a programme called

GOLEM [36] has been presented, that it is also able to perform reduction of tensor integrals

with up to six eternal legs. It will also provide an alternative to compute automatically

one-loop amplitudes [37]. Alternatives to the PV reduction scheme relevant for our discus-

sion have been also presented in the literature, including the van Oldenborgh-Vermaseren

scheme [38] and the reduction at the integrand level technique [39, 40].

In a very different line of thinking, starting from the pioneering work of Bern, Dixon,

Dunbar, and Kosower [41, 42], a new approach has been set forward, known under the name

of unitarity approach. Unitarity has been proven very powerful in computing multi-parton

amplitudes in QCD [43–45] that seemed to be impossible with the traditional Feynman

graph approach. The reason is that within the unitarity approach, one-loop amplitudes may

be calculated by using tree-order building blocks, that are either known analytically with

very compact expressions, or can be evaluated using fast recursive equations. Nevertheless

a systematic framework to develop a generic computation of any one-loop amplitude was

missing, limiting the applicability of the method.

Few years ago, Britto, Cachazo and Feng [46, 47] made a very important discovery:

introducing the so-called quadruple cut of one-loop amplitudes, they were able to reproduce

directly, known results regarding the box coefficients. It was still unclear though how to

get in a systematic way all the coefficients of the scalar integrals [48]. This problem has

been first solved by Ossola, Papadopoulos and Pittau [49, 50] (OPP), who introduced a

systematic framework, in order to calculate all coefficients of the scalar integrals (see also

[51]), as well as the rational part of the integral originating from the reduction process

of a four-dimensional numerator, called R1 in their approach. The part of the rational

remainder that originates from the explicit dependence of the numerator function on the

dimension of the loop momentum, called R2, can be reproduced by counter-terms encoded

in tree-like Feynman rules involving up to four fields [52]. Therefore, the OPP method

provides a self-contained framework for the evaluation of the full one-loop amplitude. Ellis,

Giele, Kunszt and Melnikov [53, 54] used the OPP reduction approach within the so-called

generalized unitarity approach [46, 55–58] in order to get also the full rational part of the

amplitude, paying the price to work with tree-amplitudes in higher dimensions.

The systematic extraction of all coefficients and of the rational term, opened the road

for the construction of tools that are able to compute one-loop amplitudes with any number

of particles. BlackHat [59] and Rocket [60] were the first tools to realize such a possibility:

based on either on-shell recursive equations [61–63] or Berends-Giele ones, were able to

1http://www.wolfram.com/products/mathematica/index.html.
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compute multi-gluon one-loop primitive amplitudes with as many as 20 gluons in the

final state. Primitive one-loop amplitudes with massless and massive quarks as well as

electroweak bosons, were also added later [64, 65]. Moreover, realistic calculations of

leading color NLO corrections to W + 3 jets have been achieved recently [66, 67].

In this paper, we report on the development of a new algorithm based on the tree-order

amplitude computation code HELAC[5, 6, 8] and the OPP reduction code CutTools [68].

Within this approach, it is shown how the full one-loop amplitude can be computed. Results

for the full color and helicity summed squared matrix elements for (basically) all 2 → 4

(sub-)processes included in the Les Houches wish list [1], are presented.

2 One-loop amplitudes

The one-loop n−particle amplitude, can schematically be decomposed in a sum over terms

of the form (ms = 1, . . . , n)

∑

s

∫

µ4−dddq̄

(2π)d
N̄s(q̄)

∏ms−1
i=0 D̄si

(q̄)
, (2.1)

with d-dimensional denominators

D̄si
(q̄) = (q̄ + psi

)2 − m2
si

(2.2)

where q̄ is the loop momentum in d dimensions and N̄s(q̄) is the numerator calculated also in

d dimensions.2 The sum over s includes of course all terms with different loop-assignment

structure: two structures may differ either trivially by the number of denominators or

by the different flavor and momenta appearing in the denominators, as it will be further

clarified below. In that sense a closed gluon, ghost or massless quark loop, for instance, with

the same momentum flow, is considered as different structure, although the denominators

are identical. For the highest number of denominators each loop-assignment structure

(taken into account the flavor of the particles running in the loop) corresponds to a unique

Feynman graph, but for ms < n a collection of Feynman graphs with common loop-

assignment structure should be understood.

It is a well known fact that when d → 4 limit is taken, the amplitude can be cast into

the the form

A =
∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei +
∑

i

ai Tadpolei + R , (2.3)

where Box, Triangle, Bubble and Tadpole refer to the well known scalar one-loop functions

and R = R1 + R2 is the so-called rational term.

The reduction of eq. (2.1) to eq. (2.3) is the first ingredient of any approach aiming in

the calculation of virtual corrections. In the following we will follow the so called reduction

at the integrand level, developed by Ossola, Papadopoulos and Pittau [49]. The main idea

2When speaking about numerator function, it should be kept in mind that it generally contains propa-

gator denominators not depending on the loop momentum.
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is that any numerator function (dropping for easiness of notation the reference to index s)

can be written as

N(q) =
m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3) + d̃(q; i0i1i2i3)
]

m−1
∏

i6=i0,i1,i2,i3

Di

+
m−1
∑

i0<i1<i2

[

c(i0i1i2) + c̃(q; i0i1i2)
]

m−1
∏

i6=i0,i1,i2

Di

+
m−1
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

m−1
∏

i6=i0,i1

Di

+
m−1
∑

i0

[

a(i0) + ã(q; i0)
]

m−1
∏

i6=i0

Di

+P̃ (q)
m−1
∏

i

Di . (2.4)

where now N(q) and Di are the four-dimensional versions of N̄(q̄) and D̄i(q̄). The coeffi-

cients d, c, b and a appearing in eq. (2.4) are independent of the loop momentum and the

same as the ones in eq. (2.3), whereas the new coefficients d̃, c̃, b̃, ã and P̃ (q), called also

spurious terms, are depending on the loop momentum and they integrate to zero.

Depending on the reduction method used, the calculation of any one-loop amplitude

is placed in a very different perspective. For instance eq. (2.4) can be solved in the uni-

tarity way namely by computing the numerator functions for specific values of the loop

momentum, that are solutions of equations of the form

Di(q) = 0, for i = 0, . . . ,M − 1 (2.5)

It is customary to refer to these equations as quadruple (M = 4), triple (M = 3), double

(M = 2) and single (M = 1) cuts.

Calculating the numerator function for specific values of the loop momentum, opens

the possibility to use tree-level amplitudes as building blocks. The reason is rather obvious:

the numerator function is nothing but a sum of individual Feynman graphs with the given

loop-assignment structure and as we will see in a while, it is part of a tree amplitude

with n + 2 particles. This is by itself a very attractive possibility, since one can use

existing algorithms and tools that perform tree-order amplitude calculations, exploiting

their automation, simplicity and speed. Indeed in the sequel we will describe how using

HELAC, a programme that is capable to compute any tree-order amplitude, we can also

compute any one-loop amplitude.

The existing public version of HELAC was the first implementation of the Dyson-

Schwinger (DS) recursive equations for the full Standard Model. During initialization (first

phase) HELAC performs a solution of the DS equations, expressing sub-amplitudes with k

external particles, in terms of sub-amplitudes with k − 1, k − 2, . . . , 1 external particles.

– 4 –
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Figure 1. Typical exagon topology.

The solution is represented by a sequence of integer arrays, encoding the information that

is needed for the calculation of each sub-amplitude. Since this information is the minimal

required for the calculation of the full amplitude, once particle momenta are available,

HELAC provides a fast and efficient tool to compute any scattering amplitude.

The idea to proceed to the one loop level is rather straightforward. The aim is to

collect all contributions with a given loop-assignment structure. This will allow to calculate

the corresponding numerator function N(q) in four dimensions. We will illustrate the

procedure with a 6-particle amplitude.

The input of the calculation is as usual the flavor of the 6 external particles. In HELAC

a binary representation will be used to order the external particles, called also level one

sub-amplitudes. For instance in a 6-particle amplitude external momenta are labeled by

the number 1, 2, 4, 8, 16 and 32. In the one-loop case, also the flavor of the allowed

particles in the loop has to be taken into account as an input information. The first step

is the construction of all topologically inequivalent partitions (i.e. permutations) of the

external particles into the highest possible number of sets (blobs), namely 6 in our case.

One such contribution is schematically represented as in figure 1.

The labels f and c refers to the possible flavor and color of the internal particles.

This construction will continue to include also pentagon-topologies, tetragon-topologies,

triangle-topologies, and so on. A typical collection of possible contributions is given in

figure 2. Concerning the loop-momentum flow in these constructions, the convention we

have chosen is that it runs counterclockwise, and the loop-propagator connecting the blob

that includes the particle number 1 and the last blob, is identified as D̄0(q̄).

If for instance, the color degree of freedom is omitted (we will come back to this below),

as is indeed the case for amplitudes involving colorless particles, the selection of all these

contributions is enough for the calculation of the one-loop amplitude. To help the reader to

understand the concept, the construction we have followed is equivalent to draw all possible

one-loop Feynman graphs, and then collect them in sub-classes that are characterized by

a common loop-assignment structure (after possible momentum shifts).

In practice now, each numerator contribution, will be calculated as part of the n + 2

tree-order amplitude subject to the constraint that the attached blobs, will contain no

– 5 –
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Figure 3. Typical blob without internal loop propagators.
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Figure 4. Relabeling of the ‘cut’ particles.

propagator depending on the loop momentum and no denominator will be used for the

internal loop propagators, as depicted in figure 3. Cutting now the line connecting the

blob containing the particle number 1 and the last blob, it is easy to see that we have

nothing more that a part of the n + 2 amplitude. The ‘cut’ particles with flavor f, will

now acquire their usual numbering of external particles in HELAC, namely 2n and 2n+1,

(64 and 128 for n = 6), as represented in figure 4. HELAC will know how to reconstruct

all information needed for the calculation and store it as a sequence of sub-amplitudes,

exactly as in the tree-order calculation.
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Up to now the construction is quite trivial, equivalent to a reorganization of all possible

one-loop Feynman graphs in sub-classes with common loop-assignment structure. One

important aspect though of the one-loop calculations is also the treatment of the color

degrees of freedom. In HELAC the color connection representation is used. External quarks

and anti-quarks are represented as usually by a color or anti-color index. Gluons are

also represented by a pair of color/anti-color indices. This is achieved by multiplying

the amplitude with a matrix in the fundamental representation taij and summing over the

adjoint index a for all gluons. In this way any amplitude, with any number of gluons and

quarks(anti-quarks) in any order of perturbation theory, can be represented as

Mi1,i2,...,ik
j1,j2,...,jk

with i and j referring to color/anti-color indices, taking values from 1 to Nc for SU(Nc)

(Nc = 3 for QCD). If ng is the number of gluons and nq the number of quarks (equal

also the number of anti-quarks) then k = ng + nq. Moreover the amplitude can now be

decomposed as

Mi1,i2,...,ik
j1,j2,...,jk

=
∑

σ

δiσ1
,j1δiσ2

,j2 . . . δiσk
,jk

Aσ (2.6)

where the sum is running over all permutations σi of the set {1, 2, 3, . . . , nl}. Using the

Feynman rules described in ref. [6], HELAC calculates the color-stripped amplitudes Aσ.

Namely for given flavor of external particles, HELAC generates all color connections, and for

each one of them reconstruct the integer arrays allowing the calculation of all necessary

sub-amplitudes compatible with the color connection under consideration. For instance for

a 6-gluon tree-level amplitude, out of the 720 (=6!) color connections, HELAC automati-

cally and correctly single out the 120 (=5!) that are non-zero. This is a mere fact of the

Feynman rules [6].

The color summed matrix element squared is given by

∑

{i},{j}

∣

∣

∣
Mi1,i2,...,ik

j1,j2,...,jk

∣

∣

∣

2

which can be written also as
∑

σ,σ′

A∗
σCσ,σ′Aσ′

where the color matrix Cσ,σ′ is defined by

Cσ,σ′ ≡
∑

{i},{j}

δiσ1
,j1δiσ2

,j2 . . . δiσ
k
,jk

δi
σ′

1

,j1δi
σ′

2

,j2 . . . δi
σ′

k

,jk

In practice HELAC uses the following representation for the color connection: a gluon is

represented by a two-element array (x, y), incoming quarks (outgoing anti-quarks) with

(x, 0) and outgoing quarks (incoming anti-quarks) with (0, y). So for any process

(x1, y1) . . . (xn, yn)

– 7 –
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Figure 5. A possible color connection for qq̄ → gg.
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Figure 6. A possible color connection for gg → ggg.

where yi take the values {1, 2, . . . , nl} if i is a gluon or an outgoing quark (incoming anti-

quark) otherwise yi = 0, whereas xi take the values {σ1, σ2, . . . , σnl
} if i is a gluon or

an incoming quark (outgoing anti-quark) otherwise xi = 0. So for instance for a qq̄ →
gg process, nl = 3 and a possible color connection is given by (3, 0)(0, 1)(1, 2)(2, 3), as

in figure 5, whereas for gg → ggg, nl = 5 and a possible color connection is given by

(2, 1)(3, 2)(4, 3)(5, 4)(1, 5), as depicted in figure 6.

As is evident the second element which corresponds to the anti-color index is always in

the nominal order, whereas the first element which corresponds to the color index inherits

the order of the permutation σ. The color matrix element is given by

Cσ,σ′ = Nm(σ,σ′)
c

where m(σ, σ′) count the number of common cycles of the two permutations.

The extension at the one-loop level is straightforward. Since after the one-particle

cutting one has to deal with an n + 2 tree-order matrix element, the same Feynman rules

apply [6]. In a 6-gluon amplitude for example, with a color connection representation

in HELAC (2,1) (3,2) (4,3) (5,4) (6,5) (1,6), which is commonly referred as color-ordered

or primitive or planar (see figure 7), the solution is quite obvious, with the mere addi-

– 8 –
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Figure 7. A planar one-loop 6-gluon amplitude.
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Figure 8. A non-planar 6-gluon amplitude.

tion of two more color lines (2,1)(3,2)(4,3) (5,4)(6,5)(7,6)(8,7)(1,8), after the one-particle

cutting. For an other color connection generated by a permutation of color indices ac-

cording to eq. (2.6), namely (1,1)(3,2)(4,3)(5,4)(6,5) (2,6), where the first gluon is color

connected to itself, which is commonly referred as non-planar (see figure 8), the one-

particle cutting results merely into a tree-order calculation with a different ordering, namely

(8, 1)(3, 2)(4, 3)(5, 4)(6, 5)(7, 6)(1, 7)(2, 8). Obviously, a relabeling of the color lines is nec-

essary after the one-particle cutting, in order to keep the nominal order for anti-color

indices, and this is what is done in this case. All possible color connections, as described

in eq. (2.6), needed for the fully color summed squared matrix element, are treated in

exactly the same way. For instance in the case of six-gluon one loop-amplitude including

quark loops, 6! = 720 color connections are generated. For each color connection all sub-

classes with common loop-assignment structure are computed straightforwardly by HELAC,

since after the one-particle cutting, an (n+2)-gluon, n-gluon+2-ghost or n-gluon+2-quark

tree-order structure emerges, as explained so far.

– 9 –
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HELAC second phase is synonymous of the ‘real’ computation of the amplitude, namely

assigning a complex number to it. To this end the information on the external particle

momenta should be provided. This is done by default, using the phase-space generator

PHEGAS, but this is not exclusive. Once the momenta of the external particles are given,

their polarizations are defined and therefore their wave functions are computed. At the

tree order this is all we need, and the programme returns the value of the amplitude for

each color connection. At the one-loop level though, slightly more steps are required.

First of all, the numerator functions have to be analyzed by a reduction algorithm. To

this end the programme CutTools is used. It returns, for each of the numerator function

the corresponding cut-constructible and R1 contribution, fully interfaced to the scalar

loop functions. For the scalar one-loop functions, two possible interfaces are available for

the moment, namely QCDLoop [19] and OneLOop(appendix A). In order to compute the

numerator function, the polarization vectors of the two extra ‘external’ particles, after

the one-particle cut, are also calculated. Within the Feynman gauge for gauge bosons,

the sum over four different (4-dimensional) polarizations, that satisfy
∑

i eµ
i eν

i = gµν is

performed. Ghost particles are also included. Finally for fermions, four vectors in spinor

space, satisfying
∑

i u
(i)
α u

(i)
β = (/q + m)αβ are used.

Up to now we have described how HELAC and CutTools are able to compute the

cut-constructible and R1 part of the rational term for any amplitude and for any color

connection. It turns out that the calculation of the contribution to the so-called R2 part

of the rational term is an even easier task. The reason is very simple: to calculate R2

part one has to calculate tree-order contributions, with given extra Feynman rules [69].

This is completely similar to the calculation of the counter-term contributions, needed in

any case in order to obtain renormalized amplitudes. This task for HELAC is completely

straightforward. All tree-order contributions, including only one of these extra vertices are

also generated in the same format described so far. It is worth to emphasize at this point

that the actual computation of R2 costs ‘nothing’ compared to the computation of the

cut-constructible and R1 parts, as it is expected, being a fully tree-order computation.

On the same footing the ultra-violet (UV) counter-term contributions are included. At

the present stage, with NLO QCD corrections in mind, the counter-term included in the

same automatic way are: first the gauge-coupling and the wave function renormalization,

which are trivially proportional to the tree-order amplitudes, and second the one related

to the mass renormalization, δm. They give contributions both to the ǫ0 and ǫ−1 terms.

Finally, as part of the whole project to compute NLO QCD corrections, the infrared

‘counter-terms’ have been also included automatically. This is based on the formulae pro-

vided by Catani and Seymour [70] and Catani, Dittmaier and Trocsanyi [71] and cover

the full range of interest. For the moment only the pole-parts of these formulae have been

implemented in HELAC-1L. It is worth to emphasize that the color correlations have a nat-

ural interpretation within the color connection representation. Indeed the color correlation

matrix, which accounts for the gluon emission from particle i and absorption from parti-

cle j, can be reconstructed as follows: taken any two color connections of the tree-order

configuration, I = {(xk, yk)}k=1,...,nl
and J = {(x′

k, y
′
k)}k=1,...,nl

we add to both an extra

– 10 –
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gluon (xnl+1, ynl+1) and (x′
nl+1, y

′
nl+1), with the rules, xnl+1 = xi, ynl+1 = nl + 1 and

replacing xi = nl + 1, and the same for x′
nl+1 = x′

i, y′nl+1 = nl + 1 and x′
i = nl + 1. The

same rules also apply for anti-colors, with an appropriate relabeling in order to comply

with the nominal order in the anti-color indices. If we label the two new color connections

with the extra gluon as I ′ and J ′ then the color-correlated matrix element is given by

C(i,j)
I,J =

(

N
m(I′,J ′)
c − 1

Nc
N

m(I,J)
c

)

pij with pij = −1 if the emission is from the color line

of particle i and the absorption from the anti-color line of particle j (and vice-versa) and

pij = 1 otherwise. In this way the integrated dipole counter-term is also included in the

calculation in a fully automated way.

Summarizing the procedure to calculate one-loop amplitudes, fully automated, at this

stage is as follows:

1. Construction of all numerator functions using HELAC format, namely minimal infor-

mation for the calculation of all sub-amplitudes, within the n + 2 tree-order matrix

element. All flavors within the SM can be included either as external or internal

(loop) particles. All particles can have arbitrary masses.

2. Each numerator function is reduced using CutTools. The cut-constructible and R1

part of the rational term is obtained.

3. Construction of all counter-term contributions needed for the calculation of R2 part

of the rational part. At this stage of the implementation of our method, all extra

R2-vertices needed for NLO QCD calculations have been included.

4. Construction of all UV counter-term contributions needed to renormalize the ampli-

tude.

5. Construction of all IR counter-term contributions needed to obtain a finite expression

after the cancelation of the ǫ−2 and ǫ−1 poles.

As far as testing of our calculations is concerned, there are several tools in our disposal.

The first is the Ward Identities test, whenever a massless gauge boson is present as external

particle. Replacing the wave function with its momentum, one expects the answer to be

nullified. This is a very powerful and useful test. The second is the cancelation of infrared

poles. Having implemented in a fully automated way, the infrared poles of the amplitude

based on the tree-level color-correlated matrix elements squared — the I(ǫ) operator [70, 71]

— we are able to test the reliability of our calculations.

We have also tested our results with results in the literature, whatever possible. More

specifically results for 6-gluon amplitudes have been presented in [69]. Six-quark (massless)

amplitudes have been checked also against unpublished numbers provided by the Golem

group [36]. Unfortunately, many more results in the literature have been computed in the

Conventional Dimensional Regularization (CDR) scheme, and therefore are not directly

comparable to our results (apart from the 1/ǫ2 poles that have been trivially checked),

unless the full I operator is implemented. We plan to continue with more tuned comparisons

in the near future.
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Finally, in order to better clarify possible common features or differences with other

approaches, we would like to make the following remarks:

1. As far as the ‘classical’ way of doing one-loop computations is concerned there are two

main differences concerning the reduction method used and the organization of the

calculation. The PV-reduction, imposes the use of computer algebra programmes, in

order to produce manageable expressions. We would like to emphasize that in our

approach the whole setup is purely numerical. Moreover, calculating the integrand for

specific values of the loop momentum, instead of manipulating products of momenta,

Dirac matrices and metric tensors, gives us the possibility to use the tree-order matrix

elements as building blocks. To the best of our knowledge, also the automation of

the whole procedure becomes a much more simple task in our case.

2. The other commonly used approach is the unitarity one. As far as the reduction is

concerned for the cut-constructible part of the amplitude, this is nowadays identical

to our method. There is still a different way in the organization of the calculation.

The first obvious difference is that in the unitarity approach the blobs attached to

the loop contain the full contribution, whereas in our case we have split it in order to

avoid the presence of denominators depending on the loop-momentum. This is not a

matter of principle, but just a different bookkeeping. On the other hand the use of

on-shell blobs, instead of DS equations, induces a summation over intermediate po-

larizations. In any case we believe that these differences are minor. For the moment

the more obvious difference is related to the color treatment. As we have shown,

all color connections for any scattering amplitude, are straightforwardly accessible

within our framework.

3. Finally a more recent approach, named ‘generalized unitarity’ aims in unifying the

computation of cut-constructible and rational terms. As far as the organization of

the calculation is concerned, the remarks of the previous paragraph apply as well. As

far as the reduction is concerned, we notice that in the ‘generalized unitarity’ case,

more coefficients are needed in the expansion of the one-loop integrand, coming from

the use of internal particles in higher dimensions, and the use of pentuple cuts. In

contrast within our method all calculations are performed in four dimensions. Nev-

ertheless, to our opinion, the relative merit of the two methods, has still to be judged

within actual calculations. After all, as is usually the case, a hybrid of all different

methods used so far, may at the end provide the optimal solution, not neglecting of

course the possibility of new breakthroughs in the field.

3 Results

The current implementation allows to calculate any one-loop virtual matrix element, for all

color and helicity configurations, with any external particle and with particles in the loop

that can be either gluons (ghosts) or quarks of any flavor. Moreover the cut-constructible

part can be obtained for any internal particle. When the rational counterterms for the

full Standard Model will be implemented, then any one-loop amplitude will be obtainable.

The calculation is done in a fully automatic way, and it is purely numerical.

– 12 –
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In this section we will present indicative results for a given phase-space point, for sub-

processes that basically exhaust the so called wish list given in ref. [1]. In all cases we use a

fixed strong coupling gqcd = 1, and a renormalization scale µ =
√

s. The result refers to the

squared matrix element, fully summed and averaged over colors and helicities, including all

fermion loop contributions with Nf = 6 flavors out of which five are considered as massless.

Mass renormalization is also included in the result, both at order ǫ−1 and ǫ0, according

to the conventions of ref. [31]. The top-quark mass is taken mtop = 174 GeV. An overall

normalization factor is as usually considered

cΓ =
(4π)ǫ

16π2

Γ(1 + ǫ)Γ2(1 − ǫ)

Γ(1 − 2ǫ)

In all tables following below, I(ǫ) represents the result as predicted by the color-correlated

tree-order matrix elements [70, 71], including also the ǫ−1 contributions of the coupling

constant and wave function renormalizations. Therefore the I(ǫ)-result should agree with

that of HELAC-1L for ǫ−2 and ǫ−1. Momenta are given in GeV and all results are in the

’t Hooft-Veltman scheme [15]. The electroweak parameters are taken from the default

values used by HELAC, namely

mZ =91.188GeV, mW =80.419GeV, sin2θW =1−m2
W

m2
Z

, GF =1.1663910−5 GeV−2

whereas the electromagnetic coupling constant is given by

αem =
√

2GF m2
W sin2θW /π

pp → tt̄bb̄

ǫ−2 ǫ−1 ǫ0

uū → tt̄bb̄

LO: 2.201164677187727E-08

HELAC-1L -2.347908989000179E-07 -2.082520105681483E-07 3.909384299635230E-07

I(ǫ) -2.347908989000243E-07 -2.082520105665445E-07

gg → tt̄bb̄

LO: 8.279470201927128E-08

HELAC-1L -1.435108168334016E-06 -2.085070773763073E-06 3.616343483497464E-06

I(ǫ) -1.435108168334035E-06 -2.085070773651439E-06

The momenta used to obtain the above result are

px py pz E

u(g) 0 0 250 250

ū(g) 0 0 -250 250

t 12.99421901255723 -9.591511769543683 75.05543670827210 190.1845561691092

t̄ 53.73271578143694 -0.2854146459513714 17.68101382654795 182.9642163285034

b -41.57664370692741 3.895531135098977 -91.94931862397770 100.9874727883170

b̄ -25.15029108706678 5.981395280396083 -0.7871319108423604 25.86375471407044
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pp → V V bb̄ and pp → V V + 2 jets

ǫ−2 ǫ−1 ǫ0

uū → W+W−bb̄

LO: 2.338047130649064E-08

HELAC-1L -2.493916939359002E-07 -4.885901774740355E-07 -2.775787767591390E-07

I(ǫ) -2.493916939359001E-07 -4.885901774752593E-07

dd̄ → W+W−bb̄

LO: 7.488889094766869E-09

HELAC-1L -7.988148367751314E-08 -1.564980279456171E-07 -4.246133560969201E-07

I(ǫ) -7.988148367751327E-08 -1.564980279456088E-07

gg → W+W−bb̄

LO: 1.549794572435312E-08

HELAC-1L -2.686310592221201E-07 -6.078682316434646E-07 -5.519004727276688E-07

I(ǫ) -2.686310592221206E-07 -6.078682340168020E-07

The momenta used to obtain the above result are

px py pz E

u(d, g) 0 0 250 250

ū(d̄, g) 0 0 -250 250

W+ 22.40377113462118 -16.53704884550758 129.4056091248114 154.8819879118765

W− 92.64238702192333 -0.4920930146078141 30.48443210132545 126.4095336206695

b -71.68369328357026 6.716416578342183 -158.5329205583824 174.1159068988160

b̄ -43.36246487297426 10.31272528177322 -1.357120667754454 44.59257156863792

pp → bb̄bb̄

ǫ−2 ǫ−1 ǫ0

uū → bb̄bb̄

LO: 5.753293428094391E-09

HELAC-1L -9.205269484951069E-08 -2.404679886692200E-07 -2.553568662778129E-07

I(ǫ) -9.205269484951025E-08 -2.404679886707971E-07

gg → bb̄bb̄

LO: 1.022839601391910E-06

HELAC-1L -2.318436429821683E-05 -6.958360737366907E-05 -7.564212339279291E-05

I(ǫ) -2.318436429821662E-05 -6.958360737341511E-05

The momenta used to obtain the above result are

px py pz E

u(g) 0 0 250 250

ū(g) 0 0 -250 250

b 24.97040523056789 -18.43157602837212 144.2306511496888 147.5321146846735

b̄ 103.2557390255471 -0.5484684659584054 33.97680766420219 108.7035966213640

b -79.89596300367462 7.485866671764871 -176.6948628845280 194.0630765341365

b̄ -48.33018125244035 11.49417782256567 -1.512595929362970 49.70121215982584
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ǫ−2 ǫ−1 ǫ0

pp → V + 3 jets

ud̄ → W+ggg

LO: 1.549794572435312E-08

HELAC-1L -1.995636628164684E-05 -5.935610843551600E-05 -6.235576400719452E-05

I(ǫ) -1.995636628164686E-05 -5.935610843566534E-05

uū → Zggg

LO: 3.063540808788418E-07

HELAC-1L -7.148261887172997E-06 -2.142170009323704E-05 -2.233156062664144E-05

I(ǫ) -7.148261887172976E-06 -2.142170009540120E-05

dd̄ → Zggg

LO: 3.928598671772334E-07

HELAC-1L -9.166730234135451E-06 -2.747058642091093E-05 -2.903096999338673E-05

I(ǫ) -9.166730234135443E-06 -2.747058642093992E-05

The momenta used to obtain the above result are

px py pz E

u 0 0 250 250

d̄ 0 0 -250 250

W+ 23.90724239064912 -17.64681636854432 138.0897548661186 162.5391101447744

g 98.85942812363483 -0.5251163702879512 32.53017998659339 104.0753327455388

g -76.49423931754684 7.167141557113385 -169.1717405928078 185.8004692730082

g -46.27243119673712 11.00479118171890 -1.448194259904179 47.58508783667868

px py pz E

u 0 0 250 250

ū 0 0 -250 250

Z 23.61417669184427 -17.43049377950531 136.3969887224391 166.6758570722832

g 97.64756491862407 -0.5186792583242352 32.13141045164495 102.7995306425180

g -75.55653862694311 7.079283521688509 -167.0979575288833 183.5228437955060

g -45.70520298352523 10.86988951614105 -1.430441645200695 47.00176848969281

pp → tt̄+ 2 jets

ǫ−2 ǫ−1 ǫ0

uū → tt̄gg

LO: 3.534870065372714E-06

HELAC-1L -6.127108113312741E-05 -1.874963444741646E-04 -3.305349683690902E-04

I(ǫ) -6.127108113312702E-05 -1.874963445081074E-04

gg → tt̄gg

LO: 1.599494381233976E-05

HELAC-1L -3.838786514961561E-04 -9.761168899507888E-04 -5.225385984750410E-04

I(ǫ) -3.838786514961539E-04 -9.761168898436521E-04
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The momenta used to obtain the above result are

px py pz E

u(g) 0 0 250 250

ū(g) 0 0 -250 250

t 12.99421901255723 -9.591511769543683 75.05543670827210 190.1845561691092

t̄ 53.73271578143694 -0.2854146459513714 17.68101382654795 182.9642163285034

g -41.57664370692741 3.895531135098977 -91.94931862397770 100.9874727883170

g -25.15029108706678 5.981395280396083 -0.7871319108423604 25.86375471407044

As far as the speed is concerned, it is comparable with the results presented in [59, 60,

72]. For instance, for uū → bb̄bb̄ we have 6 color connections and 12 helicity configurations,

and the time per color connection and per helicity configuration varies between 100-200

msec for a typical public lxplus machine at CERN. For the fully summed result is of

the order of 10 sec. We would like to emphasize though that this is only a measure of

the efficiency of the current implementation of the algorithm and any extrapolation to

a real calculation is to a very large extend misleading. The reason is that for a real

calculation the integration over phase space will use the tree-order matrix-element squared

for optimization, which is much cheaper in CPU time, along with a Monte-Carlo sampling

over colors and helicities for the one-loop virtual corrections. Therefore the overall speed

and efficiency should be assessed within this sampling approach. For instance, within

helicity and color sampling approach, the time for uū → bb̄bb̄ per event is reduced to 200

msec. Moreover in the re-weighting approach the virtual amplitude is calculated for a

sample of tree-order un-weighted events, resulting to a speed-up factor of 103 compared to

a straightforward Monte-Carlo integration of virtual corrections. The same is true for the

numerical stability. Therefore we will postpone a detailed discussion for these subjects,

when a full calculation for those processes, including the real corrections based on our

current implementation will be performed. Needless to notice that improvements of the

current implementation are under study, both in calculating the cut-constructible and R1

contributions in CutTools, as well as in using of HELAC at one loop.

4 Summary and outlook

In this paper we have presented an algorithm, fully automated, to evaluate any one-loop

amplitude. We have implemented this algorithm using HELAC and CutTools. The current

implementation supports any one-loop amplitude with any number and species of external

particles, but with colored particles running in the loop: for the cut-constructible part even

this last restriction does not apply. It is able to produce results for all color connections,

therefore is not restricted to primitive amplitudes or large−Nc approximation. Generic

tests of the correctness of our results, include Ward Identities, and IR poles structure. We

have also tested the full result against available calculations. In the near future we plan to

use this implementation to perform realistic calculations for LHC processes, including real

corrections within the dipole formalism [70, 73].
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A OneLOop for evaluating scalar loop integrals

The program deals with all finite and IR-divergent scalar 4-point, 3-point, 2-point and

1-point functions for all relevant real mass combinations and all relevant regions of phase-

space, and the IR-divergent cases are dealt with within dimensional regularization. The

implementations of the IR-divergent scalar functions with all internal masses equal to zero

are based on the formulas from [40, 74, 75]. The implementations of the IR-divergent scalar

functions with non-zero internal masses are based on the formulas from [19, 31, 76–78].

The implementation of the finite 4-point scalar function is based on the formulas from [79],

and the finite 3-point function is based on the formulas obtained from these by taking one

of the masses to infinity. The 2-point scalar function, finally, is based on the formula as

found in [25].

Some details worth mentioning are, firstly, that the IR-divergent 4-point functions have

consistently been expressed in terms of the variables as defined in [79] for the finite 4-point

function. These are

kij =
m2

i + m2
j − (pi − pj)

2

2mimj
(A.1)

where 1 ≤ i < j ≤ 4 and where pi,mi are the momentum and mass associated with

propagator i. If one of the masses is zero, its appearance in the denominator is replaced

by another scale, also as suggested in [79]. Furthermore, we used the variables rij defined

in [79] such that

kij = rij + 1/rij , (A.2)

essentially instead of the function K(z,m,m′) used in [19, 77].

Secondly, formulas have been numerically stabilized as much as possible by expressing

them in terms of the functions

log(x)

1 − x
,

Li2(1 − x) − Li2(1 − y)

x − y
, (A.3)

and by using stable implementations of these.
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In order to achieve the analytic continuation of the Li2-function, we used the formula

(B.3) from [77], also given in [19]. It can be formulated as follows: understanding the

meaning of the formula

log
(

z e2niπ
)

= log(z) + 2niπ (A.4)

for complex number z and integer n, the formula from [77] can be expressed as

Li2( 1−z e2niπ ) = Li2(1−z)−2niπ
{

log(1−z)+θ(|z|−1) [niπ + log(z) − log(−z)]
}

. (A.5)

This formula tells us how to evaluate the Li2-functions on different Riemann sheets. In

order to evaluate Li2(1 − z) when z is a product of several complex numbers, we should

now keep track of the overall phase of this product. This can be conveniently achieved by

writing complex numbers as

z = c(z) en(z)iπ (A.6)

where n(z) is an integer, and c(z) is a complex number with a positive real part. For real

numbers within an iε-prescription we have

x + iε → |x| eθ(−x)sign(ε)iπ . (A.7)

One can keep track of the overall phase by applying the multiplication rule

c(yz) = sign(Re c(y)c(z) ) c(y)c(z) (A.8)

n(yz) = n(y) + n(z) + θ(−Re c(y)c(z) ) sign( Im c(y) ) . (A.9)

Notice that the step-function is only non-zero if sign( Im c(y) ) = sign( Im c(z) ). If the

phase n of the final complex number at which the Li2-functions has to be evaluated is odd,

one should evaluate

Li2

(

1 + c e(n+sign(Im c))iπ
)

. (A.10)

Finally, we use, as suggested in [19], the more practical relation

Li2
(

1 − z e2niπ
)

+ Li2
(

1 − e−2niπ/z
)

= −1

2

(

log(z e2niπ)
)2

instead of eq. (A.5) when |z| > 1.
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